- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Domine, Florent (2)
-
Essery, Richard (2)
-
Atchley, Adam L. (1)
-
Balsamo, Gianpaolo (1)
-
Bartsch, Annett (1)
-
Beringer, Jason (1)
-
Blanken, Peter D. (1)
-
Boike, Julia (1)
-
Bret-Harte, M. Syndonia (1)
-
Chambers, Scott D. (1)
-
Christensen, Torben R. (1)
-
Cox, Christopher J. (1)
-
Dean, Joshua F. (1)
-
Derksen, Chris (1)
-
Dumont, Marie (1)
-
Edgar, Colin W. (1)
-
Ehrich, Dorothee (1)
-
Euskirchen, Eugénie S. (1)
-
Fausto, Robert S. (1)
-
Forbes, Bruce C (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. The Arctic poses many challenges for Earth system and snow physics models, which are commonly unable to simulate crucial Arctic snowpack processes,such as vapour gradients and rain-on-snow-induced ice layers. These limitations raise concerns about the current understanding of Arctic warming and its impact on biodiversity, livelihoods, permafrost, and the global carbon budget. Recognizing that models are shaped by human choices, 18 Arctic researchers were interviewed to delve into the decision-making process behind model construction. Although data availability, issues of scale, internal model consistency, and historical and numerical model legacies were cited as obstacles to developing an Arctic snowpack model, no opinion was unanimous. Divergences were not merely scientific disagreements about the Arctic snowpack but reflected the broader research context. Inadequate and insufficient resources, partly driven by short-term priorities dominating research landscapes, impeded progress. Nevertheless, modellers were found to be both adaptable to shifting strategic research priorities – an adaptability demonstrated by the fact that interdisciplinary collaborations were the key motivation for model development – and anchored in the past. This anchoring and non-epistemic values led to diverging opinions about whether existing models were “good enough” and whether investing time and effort to build a new model was a useful strategy when addressing pressing research challenges. Moving forward, we recommend that both stakeholders and modellers be involved in future snow model intercomparison projects in order to drive developments that address snow model limitations currently impeding progress in various disciplines. We also argue for more transparency about the contextual factors that shape research decisions. Otherwise, the reality of our scientific process will remain hidden, limiting the changes necessary to our research practice.more » « less
-
Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S.; Reji Chacko, Merin; et al (, Nature Communications)Abstract Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm −2 ) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.more » « less
An official website of the United States government
